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Abstract-The influence of tension induced Kachanov-Rabotnov type damage on the buckling of a Shanley
column model is investigated. Both instantaneous and delayed buckling are shown to occur when the state of
the column, represented by load.<Jeflection.<Jamage, reaches a certain surface, the instability surface. The
special case of purely brittle buckling is studied in some detail.

I. INTRODUCTION

Tensile members may rupture instantaneously under instantaneously applied load or after a
certain time under constant or changing load. The collapse may be caused by one or both of two
effects: (a) essential changes in geometry (Poisson effect); (b) creation and growth of damage
(here denoted Kachanov effect). Such collapse mechanisms have been examined by Hoff[l],
Kachanov[2], Odqvist[3], Broberg[4] and others.

This paper deals with corresponding phenomena for compressive members. A Shanley type
column model is analysed, considering both (a) essential changes in geometry and (b) creation
and growth of damage. The geometric effect here is the influence of the deflection on the bending
moment, which is characteristic of all compressed slender members. In contrast to this the
Poisson effect is here of minor importance and will be disregarded.

A previous study, Bostrom [5], dealt with compressive collapse of a much simplified column
model, where all deformation and damage was located in a hinge sensing only the bending
moment and not the axial force. That model may not distinguish between tensile and compressive
material behaviour and is insensitive to reversals in stress rate, all of which are of importance to
the behaviour of a real column, see Fraeijs de Veubeke[6], Hoff [7, 8].

The present study is an extension of the first analysis [5] of damage induced compressive
collapse. Here the differences in deformation and damage creation due to various changes in
stress and stress rate are taken into account.

2, MODEL STRUCTURE

An obvious improvement over the pure moment hinge model considered in [5] is the two bar
hinge model studied by Shanley [9], see Fig. I. Here different tensile and compressive material
behaviour may be taken into account with a minimum of mathematical complication.

Shanley considered an initially straight column subject to an increasing axial load. Here an
initially slightly curved column will be analysed in accordance with the pattern set by Hoff[7],
who found the initial curvature to be an important parameter in ductile creep buckling.

Experiments, e.g. by Hult[lO], have shown that the deflection curve of a metal column
subject to creep becomes increasingly more pointed with the lapse of time. This is a consequence
of the progressively nonlinear dependence of deformation and damage upon stress. The sharply
pointed Shanley column model therefore should be well suited to describe creep buckling in real
metal columns.

The Shanley hinge with bars 2d apart corresponds directly to an idealized H cross section
with flanges 2d apart. For other cross sectional forms the distance 2d may be chosen to render a
good representation of the bending stiffness.

With QI and Q2 denoting the tensile bar forces equilibrium requires

QI = - P(d - t1)/2d
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Fig. 1. Column model. All damage and deformation occurs in a hinge. consisting of two bars I and 2 with
cross sectional area A /2 each.

02 = - P(d +d)/2d. (2)

Here P denotes the axial compressive load and d the midpoint deflection. The slope e has been
assumed to be so small that cos e = I.

With P> 0 follows from (2) that 02 < 0 for all deflections d, whereas 0, < 0 only as long as
d < d. Hence bar 2 will always be compressed, whereas bar I may change from a state of
compression to tension during load application or the subsequent creep process.

With £, and £2 denoting the bar strains compatibility requires

(3)

where dOll denotes the initial midpoint deflection, and h is the bar length. The abbreviated
notation

will be used in the sequel.

A = (hL/2d) (4)

3. MODEL MATERIAL

The deformation £ and damage w of the column material, and hence also of the hinge bar
elements, are assumed to follow the constitutive relations proposed by Broberg[4]. They were
stated as

dE = G'(s)ds + F(s)dt

dw =g'(s )ds + f(s )dt

(5)

(6)
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for the case when s ~ 0and ds ~ O. Here the quantity 5, denoted net stress, will be defined as

5 = a/(I- w)
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(7)

where a is the true stress, which, in absence of a Poisson effect, equals the nominal stress.
The relations (5), (6) were applied by Broberg[4] in analysing rupture in bars under increasing

or constant tensile loads. For the present problem the constitutive relations have to be extended
to describe also cases of negative net stress, which may be decreasing or increasing.

With A /2 denoting the cross sectional area of each hinge bar there follows from (I), (2) and (7)

and

5, = -(P /A). [(1- t1/d)/(I - WI)]

52 = -(P /A) . [(I +t1/d)/(I - W2)]'

(8)

(9)

Comparison with the case of ductile creep buckling (WI == W2 == 0), see Odqvist and Hult[ll] p.
262-266, indicates that the relations between P, 51, 52 and Awill be as shown in Figs. 2 and 3. The
following assumptions are now made to cover all the constellations of 5 and s occurring
(s = d5/dt).

(I) s < 0: Compressive net stress. No damage is created; existing damage is preserved.
Hence g' = 0, f = O.

(2) s< 0: Decreasing net stress. No healing occurs. Hence g' = O.
(3) s. s< 0: Unloading in tensile or compressive regime. Instantaneous strain component is

not recovered. Hence G I = O.
(4) 5 < 0, S < 0: loading in compressive regime. Compressive strain created. Hence G' < 0,

F<O.
Evidence for assumption (I) is given by Hayhurst[12]. Assumption (2) is not very carefully

examined so far. However, since the recoverable part of the strain is here neglected it seems

p

5

Fig. 2. Load-net stress relations for the case ~oo < d. Horisontai arrows indicate creep at constant P-vaiues.
The net stress s1 needs not be positive when buckling occurs.
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Fig. 3. Load-net stress relations for the case~ > d.
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reasonable to do so with a possible recoverable part of the damage. If damage is neglected
assumptions (3) and (4) are identical to those made by Hoff[7]. The assumptions (1)-(4) lead to
the following generalizations of the constitutive relations (5), (6).

dE =G'(lsj)H(ss)ds + F(lsl) sgn sdt

dw = g'(isl)H(s)H(s)ds +!(lsl)H(s)dt

(10)

(II)

Here H( ) denotes the Heaviside unit step function, and sgn( ) the signum function.
In the subsequent analysis the functions G, F, g and! will be taken as simple power functions

G(s) = Bas"",

F(s) = Bs",

g(s) = CoS "",

!(s)=Cs".

(12)

(13)

(14)

(15)

To simplify the mathematics further the exponents no and n will be assumed to be odd integers.

4, GOVERNING EQUATIONS

Considering the net stress histories shown in Figs. 2 and 3, eqns (10)-(15) yield

w~ = 0

where, according to (8) and (9)

SI = -(PIA). [(1- dld)/(I- WI)]

and

S2 = -(PIA). (I +did).

From (3), (4) and (16)-(21) follow the incremental relations

ad d = f3 0dP + f3dt

adw 1 = yodP + ydt

where

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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(27)

(28)

(29)

denoting the area moment of inertia at the hinge.
If SI and S2 according to (20) and (21) are inserted into (24)-(28), the coefficients take the form

a = a(P, ll, WI)" •• , Y = y(P, ll, WI). (30)

For any given non decreasing loading history P = P(t) the relations (22), (23) may then be
integrated step by step to give II =ll(t) and WI = w,(t), starting from the initial state

P = 0, II = 1l0lh WI = O.

The standard type of loading history in creep buckling studies is step loading

P(t) = PoH(t).

Two phases then appear, viz.

(a) Load application phase (0- < t < 0+, 0~ p ~ Po)

The governing eqns (22), (23) take the form

adll = (3odP

adwl = yodP

(31)

(32)

(33)

(34)

where now II = ll(P), WI =WI(P). The starting conditions are 1l(0) = lloo, w.(O) = O. If Po is not
large enough to cause instantaneous buckling, this phase ends in the state II = ll(Po) == llo,
WI = WI(PO) == woo

(b) Creep phase

The governing equations are given by (22), (23) with dP/dt = O. Hence

adll = (3dt

adwl = ydt.

(35)

(376)

Here II = ll(t), WI = WI(t). The initial conditions are MO) = llo, WI(O) = Wo as caused by the load
application.

5. INSTABILITY CONDITIONS

The column may become unstable in the sense that the deflection II and damage WI increase at
an unlimited rate. This may occur during the load application phase and then implies that

(37)
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or during the creep phase and then implies that

(38)

The conditions for these two kinds of instability are given by the governing eqns (33), (34) and
(35), (36) respectively. One common condition is found for instantaneous instability (37) and
delayed instability (38), viz.

a =0 (39)

where a is given by (24). Since a = a(P,~, WI), eqn (39) defines an instability surface in
P - d - wI-space, see Fig. 4. This surface is independent of the loading history as long as the load is
a non decreasing function of time.

The changing state of the column is described by a path in this space, starting at point A. Load
application corresponds to the path A-B-C, where C is the instability point located on the
instability surface. The load P*1, is termed the instantaneous instability load (buckling load).

If Po < P*i, a creep and damage process will succeed the loading process, and a path BD will
be followed. This path terminates in the instability point D, corresponding to delayed instability.
The finite time required for the point D to be reached is called the creep buckling time.

p

1
W,

Fig. 4. Instability surface in P-~-wl-space. One case of instantaneous buckling ABC and one case of creep
buckling ABD shown. For these cases Wo = 0 since .10 < d.

6. STRESS RATE AND STRESS REVERSALS

Determination of the path ABD requires reversals in stress rate and stress to be considered.
as indicated by the functions H(s,) and H(SISl) appearing in (24)-(28). Different possible
situations appear from Figs. 2 and 3. Fig. 3 shows the behaviour when .ioo > d. Obviously
H(sl) = 1and H(SISl) = 1 throughout a process starting at ~oo > d. If, however, ~oo < d the load
application process can be divided into three parts referring to Fig. 2, viz.

(1) ~oo < ~ < d,; H(sl) = 0, H(sls.) = 1. Here~, is the deflection at the moment of stress ratc
reversal. (2) ~,<~<d; H(s.)=O, H(SISI)=O. Stress reversal occurs when ~=d. (3) Ii>d:
H(s.) = 1, H(slsl) = 1.

Now assume that the load is held constant P = Po after load application. Then .~, >0 for the
complete creep process starting at ~ = ~o. Hence stress rate reversal occurs at !i = .i, if ol" > Ii,
else it occurs at d = do. Stress reversal takes place when !i = d.

Equations (1)-(4) and (16)-(19) give the deflection at stress rate reversal as the solution of

The net stress in flange 1 then is

[
I ~, - ~oo 11/

""
sl,=-(d-~,) BoA . (d+!i,)"o-(d-!i,)"O .

(40)

(41)



The effect of tension induced damage on creep buckling 305

7. COMPLETEL Y DUCTILE BEHAVIOUR

If damage does not occur, Co = C =0 in (14)-(15), the buckling process is completely ductile.
The net stresses s are identical to the nominal stresses (T. A detailed analysis of this case is given
by Hoff[7]. He examined the buckling of an idealized H cross section column. His constitutive
equations were as given by (9) if s is changed to (T and a term corresponding to elastic
deformation is added. The results are quoted below in terms of the basic equations and the
notation used here.

I. The load deflection relation for instantaneous loading is

(42)

where

H(s\) =0 when il < il r

I il r < il

H(s\s\) = I when iloo < il < il r•

o ilr < il < d
I d < il.

II. The time-deflection relation for creep at P = Po starting with il = ilo when t =0 is given by

III. The instability condition (39) is given by inserting w\ = Co =0 in (24). The condition
common for instantaneous and delayed instability is

(44)

Index * here and in the sequel stands for conditions at instability.
The intersection between (42) and (44) gives the load P*i and deflection il*, at instantaneous

instability for a certain value of iloo• Instantaneous instability cannot occur when il < il r i.e. stress
rate reversal must take place before buckling.

The intersection between (44) and the P axis in Fig. 4 corresponds to a bifurcation load

{
d } \In"

Pr.-=A --. 2ABono
(45)

for an initially perfect column. In that case il*i = il r = iloo = O.
The time t*consumed at delayed instability is given by (43) where the upper limit of il is taken

as the solution il*d of (44) under the condition P = Po. The lower limit is calculated from (42)
with P = Po.

8. COMPLETELY BRITTLE BEHAVIOUR

This case as well as the previous one is a limiting case in the present context. It concerns
hypothetical nondeforming materials. Therefore eqns (3), (16) and (17) are replaced by the
condition il = iloo. Then if iloo > d, Sl will be positive and hence eqn (18) yields nonzero damage.
Else if iloo < d damage will not occur. In the sequel of this section it is assumed that iloo > d.

(a) Load application. 0< P < Po
Equations (8) and (18) give the load.damage relation for instantaneous loading
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(46)

Instantaneous instability defined by the condition dw,/dP = x occurs when (39) is satisfied.
Inserting Bo =0 and H(s,) = I in (39). (24) and using (8) yields the condition common for
instantaneous and delayed instability

(47)

The load according to (46) satisfies the instability condition. when the damage is

Inserting w = W *i in (46) gives the load at instantaneous collapse

(

V )'1' "">1,',, Ad
P*= -I_0_ (voCo) 'I,.".. _ d'

+ Vo '-1m

(48)

(49)

According to eqn (48) it is obvious that damage at instantaneous brittle instability is independent
of .1m as long as .100 > d.

(b) Constant load P = Po
If Po < P* collapse does not occur during load application but after a certain time t *.
The damage Wo at time t =0 is given by (46) if P = Po is inserted

(50)

Delayed instability occurs when w, = W *d. which according to the instability condition (47) is

where

k = (Po/ A ){(.1'XI- d)/d}.

(51 )

(52)

The time t* at which the column ceases to be stable under the load Po can be calculated from
eqn (36). Taking a and i' from (24) and (28) and putting B = Bo = 0 and .1 = .1,x, yields upon
integration the time-damage relation

C k ,. - ,. (I )V' I (I )'" I
t = ovo " [(1_ w,)" "" _ (I - W )' - '''] _ - w, - - Wo

C(v-vo) 0 Ck'(v+l)

Inserting w, = W *d according to (51) gives the time at delayed instability

(53)

I + (I )"" C k""Ck"( - vo (v C k"")""1/""',,1+ -Wo -~(I-wr '" (54)* - (I + v)( v - vol 0 0 I + v v - Vo 0

For materials which exhibit very small initial damage there follows by putting Co = Wo = () in (54)

t * = C(lI+ v) (A/Po)". [d/(~oo- d)]v. (55)

9. DISCUSSION

The influence of material damage on buckling at elevated temperature has been studied. This
subject was dealt with in a previous paper (Bostrom [5]), where a simple hinge model column was
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examined. A characteristic of this model is that for every initial deflection doo > 0 there exists a
finite collapse load P*. Moreover for creep under a load Po < P* there exists a finite creep
buckling time t *. This is true also for the limiting case of purely brittle behaviour (only damage,
no deformation). A different behaviour is found for the Shanley model studied in the present
paper. In the limiting case of purely brittle behaviour neither instantaneous nor delayed collapse
will occur if d'Kl < d. Such a column will be safe at any load and any time if only it is straight
enough.

Both the simple hinge model and the Shanley model in combination with the present
constitutive equations become unstable when the state (P, d, wd reaches a certain instability
surface a(P *' d*, w*) =O. For the simple hinge model the instability condition has no point
common with the P-axis. The initially straight column is then stable for all values of P and t. In
the present study the instability condition is a surface for d > dOl) and a curve in the P-d-plane for
d < dlK!' This curve intersects the P-axis at a certain load value P" given by eqn (45). A finite
buckling load exists even for the initially straight column. If, however, the load is held constant in
time at a value less than that bifurcation load the perfectly straight column will not loose its
stability at any time. To achieve a buckling time for the perfectly straight column another
approach has to be made. Such analysis has been performed by Rabotnov and Shesterikov [13].

For mixed ductile and brittle behaviour every initial imperfection will lead to buckling,
however small a load is applied. Most materials used for structural members under creep
conditions exhibit small rupture deformations when subjected to low stresses. The material
behaviour becomes more brittle at low stress levels. For the model studied here that corresponds
to large values of dw Idd for low values of Po. The warning in form of deformations prior to
buckling will be less pronounced when the load Po is small.
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